0%

Problem 12


Problem 12


Highly divisible triangular number

The sequence of triangle numbers is generated by adding the natural numbers. So the $7$th triangle number would be $1 + 2 + 3 + 4 + 5 + 6 + 7 = 28$. The first ten terms would be:

$$1, 3, 6, 10, 15, 21, 28, 36, 45, 55, \ldots $$

Let us list the factors of the first seven triangle numbers:

$$\begin{aligned}
\bf{1:} & 1\
\bf{3:} & 1,3\
\bf{6:} & 1,2,3,6 \
\bf{10:} & 1,2,5,10 \
\bf{15:} & 1,3,5,15 \
\bf{21:} & 1,3,7,21 \
\bf{28:} & 1,2,4,7,14,28 \
\end{aligned}$$

We can see that $28$ is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?


多约数的三角形数

三角形数可以由累加自然数来生成。例如,第$7$个三角形数是$1 + 2 + 3 + 4 + 5 + 6 + 7 = 28$。前十个三角形数分别是:

$$1, 3, 6, 10, 15, 21, 28, 36, 45, 55, \ldots $$

列举出前七个三角形数的所有约数:

$$\begin{aligned}
\bf{1:} & 1\
\bf{3:} & 1,3\
\bf{6:} & 1,2,3,6 \
\bf{10:} & 1,2,5,10 \
\bf{15:} & 1,3,5,15 \
\bf{21:} & 1,3,7,21 \
\bf{28:} & 1,2,4,7,14,28 \
\end{aligned}$$

可以看出,$28$是第一个拥有超过五个约数的三角形数。

第一个拥有超过五百个约数的三角形数是多少?